Training Gradient Boosted Tree Models on Jupyter Notebooks

Jupyter Notebooks

Jupyter notebooks are a popular tool for data scientists and researchers to create and share documents that contain live code, equations, visualizations, and narrative text. They are an incredibly powerful tool for interactively developing and presenting data science projects. Jupyter notebooks can be used for various use cases such as data cleaning and transformation, numerical simulation, statistical modeling, data visualization, machine learning, and more. They allow you to easily share your work with others by exporting your notebook as a PDF or HTML file. Jupyter notebooks also have a large community of users who have contributed many libraries and extensions that can be used to enhance workflows.

Gradient Boosted Tree Models

Gradient Boosted Tree (GBT) models are a type of machine learning model that are used for classification and regression problems. They work by combining multiple decision trees together to create a more accurate model. Gradient Boosted Trees are particularly useful when working with large datasets, as they can handle both numerical and categorical data. They are also known for their ability to handle missing data well. Gradient Boosted Trees have become increasingly popular due to their high accuracy rates on many different types of datasets.
Jupyter notebooks are an extremely popular tool for data scientists, analysts, and engineers alike to experiment with gradient boosted tree models before productionizing them. Kaspian securely hosts a performant and configurable JupyterHub instance, perfect for data teams who want to work with these models without wasting time setting up or managing the associated notebooking or compute infrastructure.
Learn more about Kaspian and see how our flexible compute layer for the modern data cloud is already reshaping the way companies in industries like retail, manufacturing and logistics are thinking about data engineering and analytics.

Get started today

No credit card needed